A Strong Invariance Principle for Associated Random Fields ? ?
نویسندگان
چکیده
In this paper we generalize Yu’s [Ann. Probab. 24 (1996) 2079–2097] strong invariance principle for associated sequences to the multiparameter case, under the assumption that the covariance coefficient u(n) decays exponentially as n → ∞. The main tools that we use are the following: the Berkes and Morrow [Z. Wahrsch. Verw. Gebiete 57 (1981) 15–37] multi-parameter blocking technique, the Csörgő and Révész [Z. Wahrsch. Verw. Gebiete 31 (1975) 255–260] quantile transform method and the Bulinski [Theory Probab. Appl. 40 (1995) 136–144] rate of convergence in the CLT.
منابع مشابه
Strong invariance principle for dependent random fields
A strong invariance principle is established for random fields which satisfy dependence conditions more general than positive or negative association. We use the approach of Csörgő and Révész applied recently by Balan to associated random fields. The key step in our proof combines new moment and maximal inequalities, established by the authors for partial sums of multiindexed random variables, ...
متن کاملA Nonconventional Invariance Principle for Random Fields
In [16] we obtained a nonconventional invariance principle (functional central limit theorem) for sufficiently fast mixing stochastic processes with discrete and continuous time. In this paper we derive a nonconventional invariance principle for sufficiently well mixing random fields.
متن کاملThe quenched invariance principle for random walks in random environments admitting a bounded cycle representation
We derive a quenched invariance principle for random walks in random environments whose transition probabilities are defined in terms of weighted cycles of bounded length. To this end, we adapt the proof for random walks among random conductances by Sidoravicius and Sznitman (Probab. Theory Related Fields 129 (2004) 219– 244) to the non-reversible setting. Résumé. Nous dérivons un principe d’in...
متن کاملAn almost sure invariance principle for random walks in a space-time random environment
We consider a discrete time random walk in a space-time i.i.d. random environment. We use a martingale approach to show that the walk is diffusive in almost every fixed environment. We improve on existing results by proving an invariance principle and considering environments with an L2 averaged drift. We also state an a.s. invariance principle for random walks in general random environments wh...
متن کاملAlmost Sure Invariance Principle for Random Piecewise Expanding Maps
The objective of this note is to prove the almost sure invariance principle (ASIP) for a large class of random dynamical systems. The random dynamics is driven by an invertiblemeasure preserving transformation σ of (Ω,F ,P) called the base transformation. Trajectories in the phase space X are formed by concatenations f ω := fσn−1ω ◦ · · · ◦ fσω ◦ fω of maps from a family of maps fω : X → X, ω ∈...
متن کامل